An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two

author

  • Ju-Mok Oh Mathematics, Gangneung-Wonju National University, Gangneung, Re- public of Korea
Abstract:

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,ldots$ by using inductive arguments, it does notprovide an explicit formula for that number  for an arbitrarilygiven positive integer $n$. In this paper we give a complete answerto this problem. Thus for arbitrarily given positive integers $m$and $n$, an explicit formula for the number of fuzzy subgroups of$mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$  is given.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fuzzy Subgroups of Rank Two Abelian p-Group

In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...

full text

fuzzy subgroups of rank two abelian p-group

in this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. after obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. the number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. by exploiting the order, we label the s...

full text

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

full text

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 6

pages  125- 135

publication date 2013-12-26

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023